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I. Introduction :‘:}3
H
Atom-surface scattering can be used to obtain information about the structure and ;53:
dynamics of a surface and about the atom-surface interaction potential.! When the initial ',g
energy of an incident atom (hereafter called the “incidon”) is large and its de Broglie Sty
wavelength is small, the semiclassical limit provides an accurate approximation. In this cé}
paper, we derive an expression for the exact semiclassical limit of expectation values of é‘é
functions of the incidon’s final momentum in terms of classical trajectories and equilibrium 'h
correlations for the atoms composing the surface. Since there are well-established methods Eg
for calculating classical trajectories for realistic surfaces,? the formula provides a practical E:‘ge
method to obtain the semiclassical approximation for quantities observed in scattering .
experiments. :gg
4
We illustrate the theory with a one-dimensional model consisting of an incidon scat- e
tering off a harmonic oscillator, giving numerical results for the semiclassical momentum :5:
shift and momentum uncertainty. We compare these results to those produced by the :,Eg
trajectory approximation which is frequently used in the study of inelastic atom-surface '::;
scattering.3~% We find that the trajectory approximation does not, in general, give either '::.EE'
the correct semiclassical shift or uncertainty. However, if the incidon-oscillator interaction E,:::
is adiabatic or if the maximum displacement of the harmonic oscillator from its equilibrium "'-:
position is much smaller than the range of the interaction potential, then the trajectory :EEE
approximation accurately predicts the momentum uncertainty. '.E%
II. Definition of Semiclassical Limit ' “
.-3.:
Yt

Many approaches to surface scattering have gone under the name “semiclassical.” Of- b
ten the term means that the approach employs both classical and quantum mechanical :Ezi

-
L5

2,
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methods. Alternatively, semiclassical can imply an expansion in powers of A. It is in this :;

latter, more precise sense that we use the word. '
W

']

t

We consider a d-dimensional quantum system consisting of an incidon and a surface :

]

substrate of harmonic oscillators. The Hamiltonian is d
|

2 N ]

p 1 2 2.9 4%
H=—+V(x§) +§Z(ai +wied), (1) v

3:1 ;

¢

2

where p is the incidon’s momentum, x is the incidon’s position, m is the incidon’s mass, and '
V(x, &;) is the atom-surface interaction potential which is taken to be a smooth function fif
h

t‘

of x and ;. o; and §; are coordinates for the normal modes of the surface atoms, obeying Q.:
e

the commutation relation [§;, 0;] = #46;;, and w; is a normal mode frequency. We assume -"
that V(x, ;) — +o00 as x - fi = —oo, and V(x, ;) — 0 as x - i — +o00, where i is a unit g
]

vector perpendicular to the surface. .:‘
-

A

At an initial time, tg, the surface is in thermal equilibrium at a temperature, T = Ar, '
and the incidon is described by a wave-packet of the form §
) 5

_d (x —%0)*  .po-X 3

x) = (27hy) s exp | — 2 v
#(x) = (amho)~Hexp | 220D 4 POX), ) d

X}

\]

where xg is the incidon’s initial mean position and pg is its initial mean momentum, :.:
j

0Q

satisfying pg -1 < 0. ::*
b

At a later time, ¢, the expectation value of a smooth function, Q(p), is given by

!

< Q(p) > (t) = Q(t =10,X0, P07, 7, h) (3) _ 'V

, ‘l

Since the impact parameter for the collision is generally unknown, we average < Q(p) > ji 2
over the components of xp which lie parallel to the plane of the surface. Indicating this j .:f
average with a subscript a, we have M
A

< Q(p) >a (t) = Qa(t = t0,Xg 'ﬁ’pOs Ty h)' (4) Todan -_f

e iy

ol 'l.
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The final classical value for Q is defined ::;::s%
Qfc(posr) = 'h.
. . . . . () e
| i (i (i, Q= t0:x0 820, ) ).
while the semiclassical shift for Q is E'::"
AQ(po,r,h) = ’-g
]
(e (i (1 G- dmmne)). O i
e
Finally, we define the semiclassical limit or approximation for Q as Qsc = Qy, + AQ. :;::
If the incidon’s initial energy is large compared to the energy of a typical phonon and '::::?,i
the incidon’s de Broglie wavelength is small compared to the distance scale over which the E:EE
interaction potential varies substantially, then we expect Q. to be a good approximation :
for the final expectation value of @. Since we have taken the surface temperature to be of :EE%
order k, the initial energy must also be large compared to kgT with kg being Boltzman’s :::ii:
constant. :E
0
II1. Derivation of Formula for Semiclassical Limit :;::E
:
To obtain an expression for the semiclassical limit, we use the Wigner distribution - f
function!? defined by _

]
d4aDa; ¢ N o
fx,p, &, 0i,t) =/mexp *g(p'a+§0iai) o 0.“

= 0
X p (x + %a,x - %a, & + %a,-, & - %a,-,t) , g’%
)
where Do; = H1N=1 da;, and p(x,X’, &, €.,t) =< x, &ilp(t)|x, & > is the density matrix. :::'1

The expectation value of Q(p) can be written

& Z

PP
SR

<Q(p) > (t) = / dzd%pD¢; Do;Q(p) f(x, P, &, 03, t). (8)

4 A%

L R R R
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The equation of motion for f is

o, 0 2 9 o
(3t+ma -t oige “ifzaai)f(x,p,&,cz,t)_

(9)

d . Lt N \

= EL: J(x, €213, 23) []1-__—'[1(%6—”8(_1;) (:)] [g(%azk)) (k)] f(x,p, &,0i,t),

where the sum is over all positive, odd L, with L = Z?:l l; + Ziv___l A where [; and

A are nonnegative integers; repeated indices are summed unless they are contained in
parentheses, and the coefficients, J, are given by

. N L
Jhmamxd=[II, (&mg“ﬂ[llxiﬂggg)“ﬂvuxo. (10

The initial condition is

f( X,P, Eiaai’tO) =

fsur (€, 0i) ex [__ (x —X0)2 _ 2v(p - p0)2] (11)
(wh)d P 2k~ k ’

where

N : .\ £2. 2
fsur(&iroi) = H anh(2kB )exp [— tanh(;:(;)r) (w(,;:(:) + 7:52))] (12)

The classical trajectory is defined by the equations

P (t) =mx°(t)

c aV(x’fi)
B = = T heext =gt

ofl(t) £t (13)

aV(x, &;
(t) = w( )ﬁ(,)(t) - -—*—é& )lxzxcl(t)f:‘:f,-d(t)’

and the initial conditions x(tg) = xg, p%(to) = Po» ffl(to) = 0, and ofl(tg) = 0. We

assume the incidon does not stick to the surface so that x/(t) -fi — 0o as t — oo.

Defining a distribution function, g, so that

RN £(x,p, €, 0i,t), (14)
5

g(r,s,€,6:,t) = (

BT, S T Ut T e e A At e s T P e L T T S Y, R Yy

T ath avth oFfh ¥ ot T
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where 1
r =—ﬁ[x —x°(t)] O]

i 1
| s =—=[p - p%(t)] o
VA (15) hh

._l_ . gel oy
€ “\/ﬁ[fz fg (t)] ik

equation (9) may be rewritten dou

CAT RN R SN N LA L AP P
5t T mor " S9e T Vi8¢ T R0z V8s; T R 8E Vag; )T TS0 = 3
(16) Q..’:

d . N .
2 ivh @ '(j)] [ ivh 8 A(l:)] My
: J(x, iali!’\i T, 8,€;,Sit), (::(

where the symbol “|.;” indicates that a quantity is evaluated for the classical trajectory.
cl

The initial condition for g is o
L a4

g(l',S,Ei, Ci,tO) = ::.:::

- l."

gsur(€i,S:) rl 9 (17) %

= exp|—— — 298|, R

(m)d 2 23

where

N . . Y7
guur(eins) = 11 7 tanh (L) exp - tann () (wpo ey + ;((l))] (18) i

and the coefficients, J, can be written

: (19) e
N 1 3 \9m *
H __'< he(n )> ]V(x, Ei)lcl’ -'a:

where A = }:‘,in_:l bm + Zle 0,, with by, and 6, being nonnegative integers.

From equations (16)-(19), one can show that g has an expansion e

g(r,8,€0r6int) = D (R)3gn(r s, incint), (20) W

n=0 i

6 b

el

= - p 0 W N *
AN RN N R AR |'l'e'l‘.‘l...g R W M- > 2
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where g, is independent of & and has the properties
/ddrddsDe,-Dc,-go(r,s,e,', Ci,t) =1
/ddrddsDe,'DCign(l',S,Gi,c;,t) =0, n#0 (21)

gn(—rv —8, —¢€;, —C;‘,t) = (—l)ngn(rs 8, €, S0 t)-
The equations of motion for the g, are found by substituting the expansion for g from
equation (20) into equation (16) and collecting terms of the same order in %. Using

equations (8), (14), (15), (20), and (21), the fi-expansion for < Q(p) > can be shown to

be
9Q d. d
<QP) > ()= QP+ n[ d?rd?sDe; Deigi (1,3, €, i)
(22)
32
2aan:) |t /ddrddsDe,Dq,go(r,s €y Sin )sjsk] +O(h2)
Jj
Now consider a function, f , which satisfies
rd p; O a 9, 0
mt oA tOigT —w §im— ) 1 €iroiyt) =
ot maz; a¢; do; (23)

F(x,p
[3V(X, §i) i + v (x, £t) ai_] f(x,p, &i,0irt),

dz; 9p; o¢;
with the initial condition f(x,p,fi,a,-,to) = f(x,p,éi,0i,tg). Equation (23) is the clas-
sical transport equation for a phase space probavility distribution corresponding to the
Hamiltonian H and is identical to equation (9) except that the terms with L 3 1 do not

appear.

The function g, defined
= e t) = (BYIENF . o
g(r) ssfn qz’t) - (h) f(x’ pr enaut)s (24)

satisfies an equation identical to equation (16) but without the L # 1 terms and has an

k-expansion
o0

§(r9sa5i’ciat) = z(h)%én(r,s,ei,ci,t). (25)

n=0

Yot pi gt iR 0 1y

X g8

j e e e e e -~ | -
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g also has the properties given in equation (21).

From equation (22), we then have

< Q) > (t) =Q(P)|a + h[aQ /ddrddsDe,Dc,gl(r 8, €, Siy t)S;

2 0p;op;
- / d42d%pD€; Do;Q(D) f (x, . &, 01, 1) + O(A?).

/ddrddsDeiDciél(r,s,e,-,c,',t)sJ- = /ddrddsDe,-Dc,-gl(r,s,e,',c,-,t)sj.

The equations of motion for gg and gy are identical, and hence gg = g for all times.

Although the equations for g; and §; are different, it can be shown (see Appendix A) that

(26)

142 . .
+ 19°Q(p) |c1/ ddr:.dsDe,'DCiQO(l',s»fi,Ciat)"j*’k] +0(r%)  (27)

Therefore, the classical nhase space distribution, f , gives the correct quantum expectation

value for Q up to order A.

We define a set of classical trajectories by

tr(t X P sfpa) '_mx (t x ’p Eg)a)
. vV (x, &;
p"'(t,x’,p', E:,U:) = - —%lltr
oim(t,x',p', &, 0}) =€ (¢,x', P, €}, 0))

! ! v y S
(t X,P 95;3 1) =—w e (t’x’p,’sg’oi)_—__é’z—_&_)hr’

where the derivatives of V' (x, £;) are evaluated at
x =x'"(t,x',p’, &, 07)
& =€7(t,x,p', &, 9)),
and with the initial conditions
tr(to,xl,p/, f:sa:) =xl

!

p
EI

ptr(tva,v p, 5:’*”:’)

ffr(to, X,p ,Elaa)

t ! /!
Uir(to,x’,P ’ fi)ai’) =0;

UL R T O I PRI VR
N NN W e e
- L ! »

(29)
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The solution to equation (23) can then be written
fx,p, &:0i,t) = / diz'aty D€ Do f(x',p', &1, 05 to)
5"[x —x!"(t,x, D', €016 — B (6, P, €5, )] (31)
x H {6le; - €, B!, €hoplolos = of (6B, koDl |
which implies
<Q(p) > (t) = / 4z 4% DEDAQIPY (t,%', 0, €, oI F (X, P', €01 t0) + O(A?). (32)
Expanding about the initial values for the classical trajectory of equation (13) yields

o) > () = Q] + S5 sl + e

2 3
13%Q 52 192Q, 9 2 (33)
!
+§3£'2'd fz 23 ,2!016 0i+0(h )’
where
2Q.  d*Qlp'"(t,x',p,0,0)]
oz 12\01 = 3212 |x'=x0
52q, _5*Qlpi(t xO,p 0,0)]
oo o (34
62Q 62Q[ptr(t Xo, PO, 6,:0)]
o et = T le:=0
6)2Ql 3%Q[p'" (t,%q, P0,0,0; )ll
da’ cd = 6012 al=01
and
5z =/d“z’d"p’DfﬁDoﬁf(X',p',€§>0§,to)[1'i ~ (xo)il* = hy
525 =/ddz’ddp'DfiDaéf(X',p’,Ei-,oi-,to)[p'i ~ (polil* = &
35)
. % (
62¢! = / £/ dty DE DI F (K B, € ol o) = - coth
2w 2k3
. hw
§%0} = / ddﬂilddl?’DfiDdif(x',p’,fﬁ,af,t())cx:«2 = —2—-coth 2k .
BT

In order to obtain the semiclassical shift, AQ, we must average equation (33) over the

impact parameter, differentiate with respect to %, and take the limits indicated by equation

O R P R RGN I N S AT LR RNA YT '.r‘.r'vr’ M L R e A A
B L e S o RO !h“‘""jmﬂ“lt\a QA

-----
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(6). Doing this causes the first three terms on the right side of equation (33) to vanish, as
well as those of order A2 or higher. The first term vanishes since it is independent of #, and
the third term vanishes since §2p’ ; goes to zero as v tends to infinity. The components of the
second term perpendicular to fi vanish upon averaging over the impact parameter, while
the component parallel to fi vanishes since the final momentum of the incidon becomes

independent of xg - 11 as (t — ty) — oo and xp « i — oo. Thus, the semiclassical shift is

given by |
Q—laf,;l g e’+;‘252"| (5%}, (36)
where 50 520
5120 e —xulx'lzzoo ((t }:I)IL oo( 5,2 lcl) ) an
3 Qa

im (  lim (—— ).)s
Ifc Xo-B—00 Mt—tg)—o0 661-2 'd a
with the subscript a indicating the average over the impact parameter and the subscript

fe indicating a quantity evaluated for the final, classical scattered state after the limits

Xg - 1A — oo and (¢t ~ ty) — oo have been taken.

Equation (36) may be rewritten in terms of coordinates, y;, which represent the dis-
placements of the surface atoms from their equilibrium positions, as

1 d° Qa 1 62Qa

(38)
where the correlations for the surface atom coordinates are evaluated in thermal equilib-
rium. Equation (38) has a simple physical interpretation. Consider the classical scattering
of an incidon off a surface where the surface atom coordinates initially obey a Gaussian
probability distribution with the property that it implies atom-atom correlations identical
to the equilibrium quantum mechanical atom-atom correlations. Then the average value
of Q(p) for the final scattered state will be equal to the expectation value of Q(p) for the
corresponding quantum problem to order A. Approximations using classical trajectories
with quantum initial conditions have been applied to molecular scattering!! and to the

10

- .
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calculation of relaxation rates for particles interacting with heat baths.!?:13 Equation (38)

justifies this approach for atom-surface scattering in the semiclassical limit.

We finally note that if 2kgT > hw; for all w;, then AQ « T for any Q.

IV. One-dimensional Example with

Comparison to Trajectory Approximation

As an application of the results of the previous section, we consider a one-dimensional

example where the surface consists of a single harmonic oscillator. The Hamiltonian is

2 2
_p ¢ 1,99 _(z-y)
Hig= 2+ o+ oMoy + Vpexp[- S22, (39)

where ¢ = VMo and y = £/v M with o and £ being the oscillator’s normal coordinates,

and M is the oscillator’s mass. Equation (38) gives

1 a2p 1 82p .
Ap= 'z'ay,g |fc < y2 >0 +§ EXE. Ifc < y2 >0» (40)
and
2, (97 )\ . 2 O, \2_ .o

where 62p =< (p— p'“'l)2 > +O(h2) is the momentum uncertainty of the final incidon

state. Equation (38) also implies

d 142
AQ = _?d}(’_p)lchp + E—de'gL)I,fcé:zp (42)
and
d 2
62Q = (_?igl,c) 62p, (43)

where 62Q =< [Q(p) - Q)? > +0(h?). Equations (42) and (43) imply that the semiclas-
sical shift and uncertainty for any quantity may be found from the shift and uncertainty

for p and the final value of pe.
11
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The trajectory approximation has been developed to calculate the final energy distri-
bution of the incidon (and for a flat surface the momentum distribution as well). Although
predictions based on the trajectory approximation have been compared to experiment with
some apparent success,>~8 a compelling theoretical justification for it has not been given.
To test its validity, we compare the semiclassical momentum shift and uncertainty pre-
dicted by the trajectory approximation to the exact resulits calculated from equations (40)

and (41).

The essence of the trajectory approximation is that the incidon is assumed to follow the
classical trajectory, while the surface atoms are treated quantum mechanically with a time-
dependent interaction potential, V[x"'l (t), &) The final energy distribution, Ps(E), for the
surface is then calculated, and the final energy distribution for the incidon is inferred from
the relationship

PnalE) = [ 4B'PUE)P.(Eo + E' - B), (44)

which follows from energy conservation, where Pi(E’) is the initial energy distribution for

the surface and Ej is the initial incidon energy.

Using arguments similar to those of section III, we can obtain expressions for the semi-
classical limit of the final energy shift and energy width in the trajectory approximation.
For simplicity, we confine ourselves to the particular system described by H;,;. We define

a set of trajectories by

. . ) \ 77 ta t,y',i[' — zcl(t
Myta(t,y',y') = —w2yt°(t,y',y') _ _}_éQexp [y ( R) ( )]’ (45)
with the initial conditions ta o ,
v e(to,v,9) =y
o ¢ Y ) o/ (46)
¥ (to, v, ¥) =Y,
and an energy by
) M NS 9. .
EY W, i) = 5 (v, )12 + 29 v, 3)12). (47)

12
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The semiclassical energy shift and uncertainty for the surface in the trajectory approxima-

tion are then
18%E!s 1 a2E‘“
t
and
OEY 2 OEY 2
52Ef9“=( ) <y >°+(6’ ) <y >g. (49)
From energy conservation, the energy shift, AEmd, and energy uncertainty, 6° Em 4 for
the incidon are inferred to be -
AE!S, =Egs— AEY
(50)
s*El, =6°EY,
where E{g is the initial mean energy of the surface. Using equations (42) and (43), the
momentum shift and uncertainty for the incidon may be written as
m2
Apta Emd 5 Eznd
P c fc
(51)
62pta - 52Eznd’
P fe
where py, is the final value of the incidon’s classical momentum.

Without loss of generality, we may choose units so that M = w = 1 and so py/m = —1.
We may also set Vj = 1, since a change in V) is equivalent to a shift in the coordinate
z. Assuming the surface oscillator is initially at zero temperature, the system then has,
excluding A, two independent parameters which we take as ¢ = 1/R and n = m/R.

In Figures 1-3, the exact momentum shift and that predicted by the trajectory ap-
proximation are plotted as a function of n for ¢ equal to 1, 2, and 5, and similarly Figures
4-6 show the momentum uncertainty versus n. The ratio of the momentum uncertainty in
trajectory approximation to the exact value is plotted in Figure 7.

We see from the figures that in general the predictions of trajectory approximation
deviate significantly from the exact result for both the shift and the uncertainty. How-
ever, when either n or ¢ is small the trajectory approximation accurately predicts the

13
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momentum uncertainty (but not the shift). In Appendix B, we prove that the trajectory
approximation becomes exact fo. :he uncertainty either if n <« 1 or if ¢ <« 1 and that
n < 1 corresponds to the maximum deflection of the oscillator being small compared to
the interaction range, R, while ¢ < 1 corresponds to the interaction between the incidon
and the oscillator being adiabatic. We also note, without giving a proof, that both the ex-
act and trajectory approximation values for the shift and uncertainty have zeros whenever

the classical collision is perfectly elastic.

V. Conclusions

Our main result of equation (38) provides a simple method for obtaining the semiclas-

sical limit of functions of the incidon’s final momentum. It requires only the equilibrium

MR RS

correlations of the surface atoms and quantities derivable from classical trajectories to be

calculated. We expect this method to be useful for physically interesting surfaces.
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X Appendix A

In this appendix we justify equation (26). Defining the (d + N)-dimensional vectors

‘ AIJ =(X, El)

'

‘ By =(r,€;) (41)

' C;l =(ss ci)s

‘ i4 %
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equation (16) can be rewritten

2 9 o _.2 ) 1 8V 9
. TS Cy.t) =

(at+m3r,+€13 “i '6; \/_BA 'C‘ac ) (Bus Cust)

(A2)

_ZJ’ Ayl [H (“2/—80( )) ‘ )]g(Bp,C,,,t),
=1

where the sum is over all positive, odd G, with G = E‘H’V l; where I, is a nonnegative

integer; the coefficients J' are given by

d+N o) d
s (1 o2 S ) o o

r'=0

where I' = Z‘“’N b, with b, being a nonnegative integer.

Using the expansion from equation (20), we obtain

d sid 8 o @ _ 9%V (4,) 3
(at + m or; + C;aei Wy Ezaci)gO(B/h C;lst) = BA,,BAV IclBl/aC#gO(B/UC/ut)v (A4)
and
3 s @ d 4 9 _9%v(4,) ]
(at + mar, +<1aei Wy ezaci)gl(Byacﬂ’t) - aA“aAU |CIBVaC”gl(BI"CI"t) (As)
1 3%v(4,) 2 1 3%V(4y) | 8%90(By,Cut)
A7 A |cdBvBrs QO(B;‘, Cu, t) - — let .
20A4,0A,0A, oCy 240A4,0A4,0A, " 0CL0C,3C

The equation for gy is identical to that for gy, and since g and g have the same initial

conditions, we have gy = gg. The equation for §; is

3 3 . 8 4 . 2V (4,) .
(Bt * mar, + Claei w} ezaci)gl(Bp,C;h t) = 94,04, IC’B”acpgl(Bp,C,,,t) ”
1_0%V(Ay) J .
EmlclBuBn'aEgo(B“,cp,t).

Subtracting equation (A6) from (AS5), we find
32 V(A,,)l B 2
84,084, "aC,
_ _}_ asv(All) | a gO(Bth#vt)

24 94,904,084, ° 6C,8C,8C,

a aJ d d
( +——+Ci_—wi2€iag )Agl(BuaCu’t) Agl(B,u,Cus )

at ar; d€;

(A7)
15
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where Ag; = g; — §;. Defining
Ar;(t) =/DB,,DC,‘A91(B,,,C,,,t)r]-
equation (A7) may be used to show
As;(t) =mAfT;(t)

_ 3%V (4y)
0A;j0A;

(49)

As;(t) = lciArg(t),

assuming that g(By,Cy) and its derivatives go to zero as any of its arguments goes to
infinity. Since initially Ar;(tg) = As;(tg) = O, the unique solution to (A9) is Ar;(t) =

As;(t) = 0 which suffices to demonstrate equation (26).
Appendix B

Here we show that the trajectory approximation predicts the correct momentum un-
certainty for either n < 1 or ¢ < 1. We use units with M = w = —py/m = 1 and set
Vo = 1.

Defining a set of classical trajectories by

A (RTR =S-2eC[y"(t,1/,17)-2"(!/,17.”]
§(y,9) = - vty i) - STy )=ty )]

with the initial condtions o '
z"(to, v, ¢') =x9

izr(t0$ y,' gl) ==-1
v (¢, v, ) =
gtr(to'py” y’) =g’a
and an energy by
Es(t,y,¢) = 5 ([0 (6.9, 9 + 07, 9)12),
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we have for the exact semiclassical energy uncertainty of the oscillator
oF 2 oF 2
2 _ S 2 S -2 )
6“Eg = (—By’ Ifc) <y° > +(—63}' lfc) <y >q. (B4) o

Using < y? >¢p=< ¢ >o= A/2, equation (B4) may be rewritten o

R U RN R NC <A PN
aytt oyt oy, gt . i
+2[’5yT|fc‘5;7|fc+Wlfc‘a_y-',_lfc]yfcyfc}'

From equation (49), an expression for 62Ef9“ can be derived which is identical to (BS5) "

except that y'” is replaced by y'@, while from equation (43) and energy conservation follow Y

62pta 52Eg [\N
§2p = 52E5' (B6)

We first consider the case with 7 < 1. We may rewrite the second equation of (B1) as A

the integral equction
t / / ¢ ! ! it )~z (¢
Y7 (t) = y cos(t — tg) + ¢ sin(t — tp) — 5‘/ dt'sin(t —t )eC[y (¢) =" (], (B7) %
o
which, using the first equation of (B1}), can also be written :i

t
y'"(t) = ' cos(t — tg) + ¢ sin(t — o) — % dt'sin(t — ¢') 27 (t'). (B8) (R
to St

Taking ¥’ and ¢ to be infinitesimals, we then have h
t

701 S 0 [ BT = a0 - 57 (0)] < 21, (89 &
to

since |z!"(t)] < 1. Therefore, if n < 1, then the deflection of the oscillator is much less

than the range, R = ¢~ L. '::i

If |¢y'"(t)| < 1, equations B(1) may be approximated by o

ﬂitr(t, yl’ gl) =g25"<3"(t,y’,y)
. ) (BlO) 008
gtr(t, ylv g’) == ytr(t’ yl) i’,) - (e_c‘t (t,;/,y’). 't“f
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Note that the equation for z!" is independent of y*". Thus

(6,1 9') = 27(£,0,0) = 2°(0), (B11)
N

f and

a - . . Y

. 3ty = -y (Y, ) — e, (B12)
:"

’f:' Equation (B12) together with equation (45) imply that the trajectories use:' to calculate
Ky

R the exact uncertainty are the same as those used for the trajectory approximation. Using
K (B7), we then obtain the approximate solution

1)

'5: t cl(gt

® viT(t) = y*%(t) =  cos(t — to) + ¢ sin(t — ty) — ¢ / dt'sin(t — t)e~¢=°®),  (B13)
K to

‘:, Therefore, from equation (B5), we have, for n <« 1,

1)
:? h +o0 ; el 2

B §2Es = 62EY = —| / dtet—<= (‘)| = hEyirans, (B14)
e 21/ -
‘,s where Ejrans is the classical energy transferred to the oscillator. Equation (B14) together
5..

:: with (B6) show that the ratio of the trajectory approximation momentum uncertainty
D

)

K to the exact momentum uncertainty will be nearly unity if n <« 1. It is straightforward
’i;' to verify that the solution given in (B13) leads an energy shift of zero, and thus this
W

:: approximation tells nothing about the ratio of the trajectory approximation shift to the
:“

¥

] exact shift.

K)

:: We now treat the case with ¢ < 1. Defining A(t) = exp[—¢z'"(t)], the second equation
‘

W

:E' of (B1) can be rewritten

)

¥ - tr

§'7(6) = —y'"(t) = AR, (B13)
'Y

\J

,:' The oscillator’s motion will be adiabatic if A(t) changes very little over one period of
iy

t oscillation. Thus the adiabatic condition is

: At

: |_( )| = |¢z'"(t)| < 1. (B16)

At)
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Since |£!"(t)] < 1, again considering y' and §' to be infinitesimals, condition (B16) is
satisfied if ¢ < 1.

\)
From the general theory of adiabatic motion,' we obtain the invariant o

dadb 1 .
HEat ) = [ 520 Baa = 50" + ) = 2], (B17) ke

where pe¥

Eag = 5o + 31" + 26", (B18)
is the adiabatic energy of the oscillator and © is a step function. In particular, I(E 4,0) =
E,4. Since both before and after the collision A is very small, the invariance of I implies

that the initial and final energies of the oscillator are equal. o

In general, expanding Eg to second order in y’ and §' yields 0

1 ve)? 1 .c\2 X
- O
Eg= 2( ) +2(y ) "5‘3

+(y aay, let + 5° %'Tlcl) (yd%l +9° %'y—lcl)
[(aytrlcl)2 yd¢982—y,t2:|c1+(ay/lcl)2 y f’; lcl] &
(A T M st L
tr
5

(B19) G
] .12 v

aytr aytr

tr 2.t )
| 9%yt ay 1 0%y \ 0
|cl lcl yc 3y dy’ |c1+ lcl | +y ay/ay ‘cl] "y \

v

\

+..

Since in the adiabatic limit, the initial and final oscillator energies are equal, we have for

the final energy .

1 1.
_y/2 + _y/2. (B20)

Ecoc =
ST2 2

Comparing equation (B19) with (B20) gives ..

(aytrlfc>2 (aytr|fc)2 _ (aytrlfc)2 (%ytrlfc)2 1 (321)’ / .::

and b
it aytT 3ytr 3ytr o
e Flreggrire =0 (B22) 3

lfc |fc
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A similar argument shows (B21) and (B22) to be valid if y*" is replaced by y'4. From 3

equation (B5), we thus obtain in the adiabatic limit )

k

62ES = 52E§a = E(y}c + y}c) = kEtrans, (B23) gt

demonstrating that the trajectory approximation gives the correct uncertainty for ¢ <« 1.
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FIGURE CAPTIONS

1) Ap/h vs. n with ¢ = 1 for the one-dimensional example. The solid line is the exact

value, and the dotted line is the trajectory approximation.

2) Ap/k vs. n with ¢ = 2. The solid line is the exact value, and the dotted line is the

trajectory approximation.

3) Ap/k vs. n with ¢ = 5. The solid line is the exact value, and the dotted line is the

trajectory approximation.

4) 62p/ h vs. n with ¢ = 1. The solid line is the exact value, and the dotted line is the

trajectory approximation.

5) 62p/h vs. n with ¢ = 2. The solid line is the exact value, and the dotted line is the

trajectory approximation.

6) 52p/ h vs. n with ¢ = 5. The solid line is the exact value, and the dotted line is the

trajectory approximation.

7) The ratio of the momentum uncertainty in the trajectory approximation to the exact

momentum uncertainiy vs. n. The solid line is with ¢ = 5, the dashed line is with ¢ = 2,

and the dotted line is with ¢ = 1.
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Figure 5
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